Genesis of kimberlites and diamond

V.S. Shkodzinskiy
DOI 10.31242/2618-9712-2022-27-1-7-20

Show more

Institute of Diamond and Precious Metals Geology SB RAS, Yakutsk, Russia
[email protected]

Recieved 27.10.2021
Accepted 20.01.2022

Citation
Shkodzinskiy V.S. Genesis of kimberlites and diamond // Arctic and Subarctic Natural Resources. 2022, Vol. 27, No. 1. P. 7–20. (In Russ.) https://doi.org/10.31242/2618-9712-2022-27-1-7-20

Abstract. The obtained evidence of hot heterogeneous accretion of the Earth and the calculated quantitative model of kimberlite magmas has led to a fundamentally new solution to the problem of the genesis of kimberlites and diamond. According to this data, kimberlite magmas were formed from residual melts of the bottom peridotite layer of the global magmatic ocean, which arose as a result of impact heat release during accretion. The expansion of its fractionation products by the spreading matter of mantle plumes is the reason for the absence of kimberlites in oceanic regions. Decompression solidification of magmas at the shallow stage of ascent as a result of the release of strong flukes, volatile components, led to an explosion under the influence of the high pressure of the gas phase preserved by solidification. Diamonds crystallized as a result of carbon accumulation in residual melts. Due to the low viscosity of peridotite melts, ideal octahedra with smooth faces crystallized first. The accumulation of multivalent elements during fractionation in the residual melt led to a sharp increase in its viscosity, to a change in the tangential growth of diamonds to radial, to the formation of their rhombododecahedral and cubic crystals and various sculptures. The accumulation of lithophilic components in the residual melts caused an increase in the content of impurities in late diamonds, including nitrogen.

Keywords: hot accretion, magmatic ocean, fractionation, kimberlites, diamonds.


References

  1. Luhin A.M. Vopros o proishogdenii kimberlitov i almaza – osnova effektivnogo prognosa i poiskov // Materialy XIII Vserssijskogo Petrogaficheskogo soveschanija. Vol. 4. Irkutsk, 2021. P. 297–301.
  2. Shkodzinskiy V.S. Genesis lithosphery i almaza. Model gorjachei geterogennoi akkrezii Zemli. Saarbrücken: Palmarium academic publishing, 2015. 687 p.
  3. Ringwood A.E. Sostav i proishogdenie Zemli. M.: Nauka, 1982. 294 p.
  4. O’Neil H.S. Oxygen fugacity and siderophile elements in the Earth’s mantle: implications for the origin of the Earth // Meteoritics. 1990. No. 25 (4). P. 395.
  5. URL: wikichi.ru/wiki/protoplanetary/disk.
  6. Shkodzinskiy V.S. Fasovaja evolutsia magm i petrogenesis. M.: Nauka, 1985. 232 p.
  7. Shkodzinskiy V.S. Globalnaja petrologioa po sovremennym dannym o gorjachei geterogennoi akikretsii Zemli. Yakutsk: SVFU, 2018. 244 p.
  8. Sobolev N.V., Sobolev A.V., Tomilenko A.A., Bata­ nova V.G., Tolstov A.V., Logvinova A.M., Kuz’min D.V. Unique compositional pecualirities of olivine phenocrysts from the post flood basalt diamondirerous Malokuonapskaya Kimberlite pipe, Yakutia // Doklady Earth Sciences. 2015. Vol. 463, No. 2. P. 828–832.
  9. Grahanov S.A., Koptil V.I. Triasovaja paleorossyp almasov Severo-Vostoka Sibirskoi platformy // Geologia i geofisika. 2003. Vol. 44, No. 11. P. 1151–1201.
  10. Harkiv D.V., Sinchuk N.N., Kruchkov A.N. Korennye mestorozhdenija almazov Mira. M.: Nedra, 1998. 554 p.
  11. Rybalchenko A.Ja., Rybalchenko T.M., Silaev V.I. Teoreticheskie osnovy prognosa i poiskov korennyh mestorozhdenii almazov tuffisitovogo tipa // Isvestija Karelskogo nauchnogo zentra UrOAN. 2018. Iss. 1 (5). P. 54–56.
  12. Argunov K.P. Korennye mestorozhdenija almazov Yakutii. Novosibirsk: YaNC SO RAN, 2005. 406 p.
  13. Tarskii O.B., Shahurdina N.K. Lateralnaja neodnorodnost verhnei mantii territorii Yakutskoi kimberlitovoi provinzii // Materialy XIII Vserossijskogo Petrograficheskogo soveschanija. Vol. 4. Irkutsk, 2021. P. 54–56.
  14. Vasilenko V.B., Kuznetsova L.G., Minin V.A., Tolstov A.V. Petrochemical Evalution of the Diamond potentials of Yakutian Kimberlite fields // Geochemistry International. 2010. Vol. 48, No. 4. P. 346–354.
  15. Lapin A.V., Tolstov A.V., Vasilenko V.B. Petrogeochemical characteristics of the Kimberlites from the Middle Markha Region with application to the problem of the geochemical heterogeneity of Kimberlites // Geochemistry International. 2007. Vol. 45, No. 12. P. 1197–1209.
  16. Vaganov V.I. Almaznye mestorozhdenija Rossii i Mira. M.: Geoinformmark, 2000. 371 p.
  17. Sinchuk N.N., Koptil V.I. Tipomorfism almazov Sibirskoi platformy. M.: Nedra, 2003. 603 p.
  18. Ilupin I.P., Kaminskii F.V., Francesson E.N. Geohimija kimberlitov. M.: Nedra, 1978. 357 p.
  19. Lapin A.V., Tolstov A.V., Antonov A.V. Sr and Nd isotopic compositions of kimberlites and associated Rocks of the Siberian craton // Doklady Earth Sciences. 2007. Vol. 414, No. 1. P. 557–560.
  20. Gurney J.J., Hildebrand P.B., Carlson J.A. The morphogical characteristics of diamonds from the Ecaty property, Canada // 8th International Kimberlite Conference. Selected Papers. Vol. 2. 2004. P. 21–38.
  21. Mittchel R.H. Kimberlites, arangites, and related rocks. NY: Plenum Press, 1995. 410 p.