Fluorine in surface and suprapermafrost waters in Central Yakutia


S.V. Fedorova, N.А. Pavlova*
DOI 10.31242/2618-9712-2022-27-2-233-245

Show more

Melnikov Permafrost Institute SB RAS, Yakutsk, Russia
*[email protected]

Submitted 22.12.2021
Revised 15.02.2022
Accepted 30.03.2022

For citation
Fedorova S.V., Pavlova N.A. Fluorine in surface and suprapermafrost waters in Central Yakutia // Arctic and Subarctic Natural Resources. 2022, Vol. 27, No. 2. P. 233–245. (In Russ.) https://doi.org/10.31242/2618-9712-2022-27-2-233-245

Abstract. We studied the distribution of fluorine in fresh and slightly salty surface waters, and suprapermafrost waters in Central Yakutia. The study was based on the results of hydrochemical works carried out by employees of the Melnikov Permafrost Institute SB RAS from 1984 to 2019. According to the sanitary requirements, the optimal concentration of fluorine in drinking water is 0.5–1.0 mg/L, with its maximum concentration 1.2–1.5 mg/L. Excessive intake of fluoride leads to disorders in the musculoskeletal, neuroendocrine and cardiovascular systems, while its deficiency leads to formation of dental caries. We used chemical analyzes of water samples from the surface streams and water bodies (479 samples), and underground waters of the vadoze zone (375 samples). The analyzes of water samples in the rivers and channel taliks showed that the average content of fluorine was no more than 0.3 mg/L, which did not reach the requirement for its optimal level for drinking water. The analyzes also showed a deficiency of fluorine in the waters of lakes and taliks under erosional and tukulan lakes. However, the fluorine content exceeded 1.5 mg/L in stagnant lakes, where more than 50 % of the cationic composition of water was sodium ion. Meanwhile fluorine concentration reached 3.2 mg/L in taliks under the stagnant thermokarst lakes. The saturation of suprapermafrost waters with fluorine can occur in the area of spring discharge under the influence of cryogenic disintegration of water-bearing rocks and metamorphization of the chemical composition of water during phase transitions. They lead to the precipitation of calcite from the solution, its pH increase, and accumulation of fluorine.

Keywords: fluorine, Lena river, small rivers, lakes, taliks, suprapermafrost waters, chemical composition

Acknowledgements. The research was partially supported by the Russian Foundation for Basic Research (grant number 20-05-00670). The authors are grateful to L.Yu. Boitsova and O.V. Shepeleva (PI SB RAS) for carrying out the analytical studies of water samples, Shepelev V.V. (PI SB RAS) for helpful comments.


References

  1. Fordyce F.M., Vrana K., Zhovinsky E., Povoroznuk V., Toth G., Hope B.C., Iljinsky U., Baker J. A health risk assessment for fluoride in Central Europe // Environ. Geochem. Health. 2007. Vol. 29. Р. 83–102. https://doi. org/10.1007/s10653-006-9076-7.
  2. Ozsvath D.L. Fluoride and environmental health: a review // Rev. Environ. Sci. Biotechnol. 2009. Vol. 8. Р. 59– 79. https://doi.org/10.1007/s11157-008-9136-9
  3. Donskikh I.V. The influence of fluorine and its compounds on people’s health (literature review) // Byulleten’ VSNTS RAMN [Bulletin of the Eastern Siberian scientific center of the SB of the RAMS]. 2013. Vol. 1, No. 3 (91). P. 179–185.
  4. WHO (World Health Organization). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Switzerland, Geneva, 2017. 631 p.
  5. Yousefi M., Ghalehaskar S., Asghari F.B., Ghaderpoury A., Dehghani M. H., Ghaderpoori M., Mohammadi A.A. Distribution of fluoride contamination in drinking water resources and health risk assessment using geographic information system, northwest Iran // Regulatory Toxicology and Pharmacology. 2019. Vol. 107. 104408. https://doi.org/10.1016/j.yrtph.2019.104408.
  6. Fluoride in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization. 2004. 17 р. WHO/ SDE/WSH/03.04/96. English only.
  7. Aghapour S., Bina B., Tarrahi M.J., Amiri F., Ebrahimi A. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS // Environmental Monitoring and Assessment. 2018. Vol. 190. P. 137. https://doi.org/10.1007/ s10661-018-6467-z.
  8. Kalyuzhnaya E.E., Prosekov A.Y., Volobaev V.P. Genotoxic properties of fluorines (review) // Gigiyena i sanitariya [Hygiene and Sanitation]. 2020. Vol. 99. No. 3. P. 253–258. https://doi.org/10.33029/0016-9900-2020-993-253-258.
  9. Shvartsev S.L., Ryzhenko B.N., Alekseyev V.A., Dutova E.M., Kondratyeva I.A., Kopylova Yu.G., Lepokurova O.E. Geologicheskaya evolyutsiya i samoorganizatsiya sistemy voda – poroda. T. 2: Sistema voda – poroda v usloviyakh gipergeneza [Geological evolution and selforganization of the water – rock system. Vol. 2: The water – rock system under conditions of hypergenesis]. Novosibirsk: Publishing house of SB RAS, 2007. 389 p.
  10. Kraynov S.R., Shvets V.M. Geokhimiya podzemnykh vod khozyaystvenno-pit’yevogo naznacheniya [Geochemistry of ground waters for household and drinking purposes]. Moscow: Nedra, 1987. 237 p.
  11. Limantseva O.A., Ryzhenko B.N., Cherkasova E.V. Model for the formation of fluorine-bearing rocks in the carboniferous deposits of the Moscow artesian basin // Geokhimiya [Geochemistry international]. 2007. No 9. P. 981–998.
  12. Thapa R., Gupta S., Gupta A., Gupta A., Reddy D.V., Kaur H. Geochemical and geostatistical appraisal of fluoride contamination: An insight into the Quaternary aquifer // Science of the Total Environment. 2018. Vol. 640–641, No. 1. P. 406–418. https://doi.org/10.1016/ j.scitotenv.2018.05.360.
  13. Vernadsky V.I. Izbrannyye sochineniya [Selected works]. Vol. 2. Moscow: Publishing house of the Academy of Sciences of the USSR, 1955. 615 p.
  14. Yanin E.P. Fluorine in the environment (prevalence, behavior, technogenic pollution) // Ekologicheskaya ekspertiza [Environmental Expertise]. 2007. No. 4. P. 2–98.
  15. Krauskopf K.B., Bird D.K. Introduction to Geochemistry. New York: McGraw-Hill, 1995. 647 p.
  16. Wedepohl K.H. Handbook of geochemistry. Berlin: Springer-Verlag, 1969. Vol. II-l. 442 p.
  17. Grigoriev N.A. Raspredeleniye khimicheskikh elementov v verkhney chasti kontinental’noy kory [Distribution of chemical elements in the upper part of the continental crust]. Ekaterinburg: UB RAS, 2009. 382 p.
  18. Turekian K.K. Chemistry of the Earth: Holf, Rinehart and Winston Inc. USA, 1972. 136 p.
  19. Khimiya okeana. Vol. 1. Khimiya vod okeana [Ocean chemistry. Vol. 1. Chemistry of ocean waters]. Moscow: Nauka, 1979. 518 p.
  20. Gordeev V.V. Rechnoy stok v okean i cherty yego geokhimii [River runoff into the ocean and features of its geochemistry]. Moscow: Nauka, 1983. 160 p.
  21. Gordeev V.V. A new estimate of the surface runoff of dissolved substances into the ocean // DAN SSSR [Reports of the USSR Academy of Sciences]. 1981. Vol. 261, No. 5. P. 1227–1230.
  22. Anichkina N.V. Research of fluorine biogeochemistry in the ecosystem components // Nauchnoye obozreniye. Biologicheskiye nauki [Scientific Review. Biological Science]. 2016. No. 3. P. 5–23.
  23. Brindha K., Elango L. Fluoride in Groundwater: Causes, Implications and Mitigation Measures // Monroy S.D. (Ed.). Fluoride Properties, Applications and Environmental Management. Publisher Nova, 2011. P. 111–136.
  24. Subba Rao N. Controlling factors of fluoride in groundwater in a part of South India // Arabian Journal of Geosciences. 2017. Vol. 10, No. 524. https://doi.org/ 10.1007/s12517-017-3291-7.
  25. Malago J., Makoba E., Muzuka A.N.N. Fluoride Levels in Surface and Groundwater in Africa: A Review // American Journal of Water Science and Engineering. 2017. Vol. 3, No. 1. P. 1–17. https://doi.org/10.11648/ j.ajwse.20170301.11.
  26. Shvartsev S.L. Gidrogeokhimiya zony gipergeneza [Hydrogeochemistry of the hypergenesis zone]. Moscow: Nedra, 1978. 287 p.
  27. Filimonova L.G. Geokhimiya ftora v zone gipergeneza oblastey mnogoletney merzloty [Fluorine geochemistry in the hypergenesis zone of permafrost regions]. Moscow: Nauka, 1977. 152 p.
  28. Zamana L.V., Usmanova L.I., Usmanov M.T. Ecologic-geochemical assessment of ground waters in Chita city used for decentralized water-supply // Voda: khimiya i ekologiya [Water: chemistry and ecology]. 2011. No. 12 (42). P. 105–109.
  29. Kashin V.K., Afanasieva L.V., Ubugunov L.L. The fluride in components of Western Transbaikalia landscapes // Agrohimiya [Eurasian Soil Science]. 2015. No. 10. P. 38–49.
  30. Anisimova N.P. Fluorine in drinking waters of Central Yakutia // Proceedings of the North-Eastern Branch of the Permafrost Institute. Yakutsk: 1958. No. 1. P. 125–133.
  31. Anisimova N.P. Kriogidrogeokhimicheskiye osobennosti merzloy zony [Cryohydrogeochemical features of the frozen zone]. Novosibirsk: Nauka, 1981. 153 p.
  32. Anisimova N.P., Golovanova T.V. Fluorine content in permafrost waters of Central Yakutia and methods for reducing its concentration // Geocryological and hydrogeological studies of Siberia. Yakutsk: Kn. izd-vo, 1972. P. 158–163.
  33. Anisimova N.P., Pavlova N.A. Gidrogeokhimicheskiye issledovaniya kriolitozony Tsentral’noy Yakutii [Hydrogeoghemical studies of permafrost in Central Yakutia]. Novosibirsk: Academic Publishing House «Geo», 2014. 189 p.
  34. Pavlova N.A., Fedorova S.V. Fluoride levels in fresh and slightly salin waters of permafrost zone (Сentral Yakutia) // Proceedings Of The Fourth all-Russian Scientific Conference with International Participation «Water-rock interaction: geological evolution». Ulan-Ude: BSC SB RAS Publisher, 2020. P. 171–174. https://doi. org/10.31554/978-5-7925-0584-1-2020-171-174.
  35. Balobaev V.T., Ivanova L.D., Nikitina N.M., Shepelev V.V., Lomovtseva N.S., Skutin V.I. Podzemnyye vody Tsentral’noy Yakutii i perspektivy ikh ispol’zovaniya [Groundwaters in Central Yakutia and prospects of their use]. Novosibirsk: Publishing house of SB RAS branch
    «Geo», 2003. 137 p.
  36. Dzhamalov R.G., Krichevets G.N., Safronova T.I. Current changes in water resources in Lena river basin // Water resources. 2012. Vol. 39, No. 2. P. 147–160.
  37. Ivanov M.S. Kriogennoye stroyeniye chetvertichnykh otlozheniy Leno-Aldanskoy vpadiny [Cryogenic structure of the Quaternary deposits of the Lena-Aldan depression]. Novosibirsk: Nauka, 1984. 125 p.
  38. Zhirkov I.I. Classification scheme of limnological genetic lakes North-East // Uchenyye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta. 2014. No. 34. P. 18–25.
  39. Ushnitskaya L.A., Pestryakova L.A., Subetto D.A., Troeva E.I. Morfometricheskaya kharakteristika ozer LenoAmginskogo mezhdurech’ya [Morphometric characteristics of the lakes of the Lena-Amga interfluve] // Nauka i obrazovaniye. 2014. No 4. P. 71–76.
  40. Arzhakova S.K., Zhirkov I.I., Kusatov K.I., Androsov I.M. Reki i ozera Yakutii: kratkiy spravochnik [Rivers and lakes of Yakutia: a short guide]. Yakutsk: Bichik, 2007. 136 p.
  41. Gorodnichev R.M., Ushnitskaya L.A., Yadrikhinskiy I.V., Spiridonova I.M., Kolmogorov A.I., Frolova L.A., Pestryakova L.A. Morphometrical and Hydrochemical Features of Fluvial-Erosion Lakes of Basins of the Northern Rivers of Yakutia // Vestnik of the North-Eastern Federal university named after M.K. Ammosov. 2014. Vol. 11, No. 6. P. 30–37.
  42. Anisimova N.P., Pavlova N.A., Stambovskaya Y.V. Khimicheskiy sostav podzemnykh vod talikov doliny srednego techeniya reki Leny [Chemical composition of groundwater taliks in the middle reaches of the Lena River] // Nauka i obrazovaniye. 2005. No. 4. P. 92–96.
  43. Shepelev V.V. Podzemnyye vody tukulanov Tsentral’noy Yakutii [Underground waters of tukulans of Central Yakutia] // Eolovyye obrazovaniya Tsentral’noy Yakutii [Aeolian formations of Central Yakutia]. Yakutsk: Published by the Permafrost Institute of the Siberian Branch of the USSR Academy of Sciences, 1981. P. 30–41.
  44. Shepelev V.V. Nadmerzlotnyye vody kriolitozony [Suprapermafrost waters of the permafrost zone]. Novosibirsk: Academic publishing house «Geo», 2011. 169 p.
  45. Pavlova N., Ogonerov V., Danzanova M., Popov V. Hydrogeology of Reclaimed Floodplain in a Permafrost Area, Yakutsk, Russia // Geosciences. 2020. Vol. 10(5). P. 192. https://doi.org/10.3390/geosciences10050192.
  46. Anisimova N.P. Formirovaniye khimicheskogo sostava podzemnykh vod talikov (na primere Tsentral’noy Yakutii) [Formation of the chemical composition of groundwater taliks (by the example of Central Yakutia)]. Moscow: Nauka, 1971. 195 p.
  47. Tishin M.I. Geothermal conditions for the formation of suspect taliks in Central Yakutia: Avtoref. diss. … kand. geol.-min. nauk. Moscow, 1982. 14 p.
  48. Boytsov A.V. Osobennosti rezhima istochnikov presnykh vod Tsentral’noy Yakutii v svete ekologii transportnogo stroitel’stva [Features of the regime of fresh water sources in Central Yakutia in the light of the ecology of transport construction] // Kriolitozona i podzemnyye vody Sibiri. CH. 2. Podzemnyye vody i naledi [Cryolithozone and underground waters of Siberia. Part 2. Groundwater and ice]. Yakutsk: Permafrost Institute SB RAS, 1996. P. 46–62.
  49. Monitoring podzemnykh vod kriolitozony [Monitoring of ground waters of the permafrost zone] // V.V. Shepelev, A.B. Boytsov, N.G. Oberman, N.P. Anisimova. Yakutsk: Publishing House of the Permafrost Institute SB RAS, 2002. 172 p.
  50. Lebedeva L.S., Bazhin K.I., Khristoforov I.I., Abramov A.A., Pavlova N.A., Efremov V.S., Ogonerov V.V., Tarbeeva A.M., Fedorov M.P., Nesterova N.V., Makarieva O.M. Suprapermafrost subaerial taliks, Central Yakutia, Shestakovka river basin // Earth’s Cryosphere. 2019. Vol. XXIII, No. 1. P. 40–50. https://doi.org/10.21782/ KZ1560-7496-2019-1(40-50).
  51. Pavlova N., Lebedeva L., Efremov V. Lake water and talik groundwater interaction in continuous permafrost, Central Yakutia // E3S Web Conf. 2019. Vol. 98. 07024. https://doi.org/10.1051/e3sconf/20199807024.
  52. Aksyuk A.M. Fluorine regime in deep hydrothermal fluids and near-surface waters (experimental studies): Avtoref. diss. doktora geol.-min. nauk. Moscow: Insti-
    tute of Experimental Mineralogy RAS, 2007. 59 p.
  53. Ivanov A.V. Kriogennaya metamorfizatsiya khimicheskogo sostava prirodnykh l’dov, zamerzayushchikh i talykh vod [Cryogenic metamorphization of the chemical composition of natural ice, freezing and melt water]. Khabarovsk, Vladivostok: Dalnauka, 1998. 164 p.
  54. Fotiyev S.M. Kriogennyy metamorfizm porod i podzemnykh vod (usloviya i rezul’taty) [Cryogenic metamorphism of rocks and groundwater (conditions and results)]. Novosibirsk: Academic publishing house «Geo», 2009. 279 p.