Без рубрики

Bioclimatic modeling of the distribution of Scotch pine (Pinus sylvestris L.) in Yakutia

A.P. Isaev1,2, B.Z. Borisov1, E.N. Nikiforova1
DOI 10.31242/2618-9712-2019-24-3-11

Show more

1Institute of Biological Problems of Cryolithozone, SD RAS, Yakutsk, Russia
2M.K. Ammosov North-East Federal University, Yakutsk, Russia
[email protected]

Received 12.06.2019
Accepted 07.08.2019

Isaev A.P., Borisov B.Z., Nikiforova E.N. Bioclimatic modeling of the distribution of Scotch pine (Pinus sylvestris l.) in Yakutia // Arctic and Subarctic natural resources. 2019; V. 24, N 3, pp. 121–133. (In Russ.). https://doi.org/10.31242/2618-9712-2019-24-3-11

Abstract. A bioclimatic model of the distribution of Scotch pine (Pinus sylvestris L.) was created using geoinformation modeling in the MaxEnt. The new map of this species was built with the differentiation into “preferred”, “suitable” and “not suitable” locations. Climatic factors limiting the range of this species in the Republic of Sakha (Yakutia) were identified, and their role in creating the model was estimated (%). These factors include Bio 01 – the average annual temperature (the contribution to the model is 52.2 %) and Bio 08 – the average temperature of the wettest quarter of the year (34.5 %). The remaining bioclimatic variables had a too high permutation coefficient, or their contribution to the model was less than 1 %. Using the EVI vegetation index, the model was verified. The similarity of the MaxEnt model data and the positive EVI values for April 2016 was estimated at 69.5 %. The data of the analysis can serve as the basis for creating a new map of the area of Scotch pine not only in Yakutia, but throughout Northern Eurasia. In addition, the model allows us to understand how the species composition of forests and the forest cover of Yakutia will change under various climatic scenarios.

Key words: GIS, WorldClim, Pinus sylvestris, Yakutia, bioclimatic variables, area of Scots pine, map.

Acknowledgements. This research was carried out within the framework of state assignment of IBPC SO RAN on 2017-2021 (project “Fundamental and applied aspects of the study of vegetation diversity of Northern and Central Yakutia” reg. no. АААА-А17-117020110056-0).

  1. Shubin V.I., Geles I.S., Krutov V.I. Povyshenie proizvoditel’nosti kul’tur sosny i eli na vyrubkah. Petrozavodsk, 1991. 176 p.
  2. Sakovec V.I., Germanova N.I., Matyushkin V.A. Ekologicheskie aspekty gidromelioracii v Karelii. Petrozavodsk: KarNC RAN, 2000. 155 p.
  3. Hellkvist J., Parsby J. The water relations of Pinus sylvestris. III. Diurnal and seasonal patterns of water potential // Physiol. Plant. 1976. V. 38. P. 61–68.
  4. Sokolov A.I. Lesovosstanovlenie na Severo-Zapade Rossii. Petrozavodsk, 2006. 215 p.
  5. Sazonova T.A., Bolondinskij V.K., Pridacha V.B. Ekologo-fiziologicheskaya harakteristika sosny obyknovennoj. Petrozavodsk: Verso, 2011. 206 p.
  6. Schcepashchenko D.G., Shvidenko A.Z., Lesiv M.Yu. et al. Ploshchad’ lesov Rossii i ee dinamika na osnove sinteza produktov distancionnogo zondirovaniya // Lesovedenie. 2015. N 3. C. 163–171.
  7. Zamolodchikov D.G. Ocenka klimatogennyh izmenenij raznoobraziya drevesnyh porod po dannym uchetov lesnogo fonda // Uspekhi sovremennoj biologii. 2011. V. 131. N 4. P. 382–392.
  8. Timofeev P.A., Isaev A.P., Schcerbakov I.P. et al. Lesa srednetaezhnoj podzony Yаkutii. Yаkutsk: Yаkutskij nauchnyj centr SO RAN, 1994. 140 p.
  9. Troeva E.I., Isaev A.P., Cherosov M.M. et al. The Far North: Plant Biodiversity and Ecology of Yakutia // Plant and Vegetation. V. 3. Springer, 2010. P. 165.
  10. Elith J., Graham C.H., Anderson R.P. et al. Novel methods improve prediction of species distributions from occurrence data // Ecography. 2006. V. 29. P. 129–151.
  11. Gibson L., Barrett B., Burbidge A. Dealing with uncertain absences in habitat modeling: a case study of a rare ground-dwelling parrot // Divers. Distribut. 2007. V. 13(6). Р. 704–713.
  12. Hernandez P.A., Franke I., Herzog S.K. et al. Predicting species distributions in poorly-studied landscapes // Biodivers. Conserv. 2008. V. 17. Р. 1353–1366.
  13. Franklin J. Mapping species distribution; spatial inference and prediction. Cambridge: Cambridge University Press, 2010. 320 p.
  14. Ward G. Statistics in ecological modeling; presenceonly data and boosted mars. Palo Alto: Stanford University, 2007.
  15. Phillips S.J., Anderson R.P., Schapire R.E. Maximum entropy modeling of species geographic distributions // Ecol. Modeling. 2006. V. 190. Р. 231–259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026
  16. Olonova M.V. Ispol’zovanie gerbarnyh kollekcij dlya ekologicheskogo modelirovaniya // Materialy III mezhd. nauchno-prakt. konferencii «Problemy sohraneniya biologicheskogo raznoobraziya i ispol’zovaniya biologicheskih resursov» (7–9 oktyabrya 2015). Ch. 1. Minsk. Belarus’, 2015. P. 446–449.
  17. Schelderman X., van Zonneveld M. Training manual on spatial analysis of plant diversity and distribution. Rome: Biodiversity International, 2007. 180 р.
  18. Stohlgren K.S. MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia // Journal of Ecology and Natural Environment, 2009. – V. 1(4). Р. 094-098.
  19. Khafaga O., Hatab E.E., Omar K. Predicting the potential geographical distribution of Nepeta septemcrenata in Saint Katherine Protectorate, South Sinai, Egypt using MaxEnt // Academia Arena. 2011. V. 3(7). Р. 45–50.
  20. Egoshin A.V. Modelirovanie prostranstvennogo raspredeleniya vidov na territoriyah OOPT Zapadnogo Kavkaza s ispol’zovaniem geoinformacionnyh system / Priroda.su 2012-1, http://www.priroda.su/item/2981
  21. Gaston K.J. Species richness: measure and measurement. Biodiversity: a biology of numbers and difference / ed. K.J. Gaston. Oxford: Blackwell Science, 1996. Р. 77–113.
  22. Hijmans R.J., Cameron S.E., Parra J.L. et al. Very high resolution interpolated climate surfaces for global land areas // Int. J. Climatol. 2005. V. 25. Р. 1965– 1978. DOI: 10.1002/joc.1276
  23. Yakutiya / red. I.S. Gerasimova. M.: Nauka, 1965. 464 p.
  24. Atlas lesov SSSR. M.: Glavnoe upravlenie geodezii i kartografii pri Sovete ministrov SSSR, 1973. 222 p.
  25. www.wordclim.org
  26. Guisan A., Graham C.H., Elith J., Huettmann F. and the NCEAS. Species Distribution Modelling Group. Sensitivity of predictive species distribution models to change in grain size // Divers. Distrib. 2007. V. 13. Р. 332–340.
  27. Pearson R.G., Raxworthy C.J., Nakamura M., Peterson A.T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar // J. Biogeo. 2007. V. 34. Р. 102–117.
  28. Murienne J., Guilbert E., Grandcolas P. Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species’ distribution modelling // Bot. J. Linn. Soc. 2009. V. 97. Р. 177–184.
  29. Phillips S.J., Dudik M. and Schapire R.E. A maximum entropy approach to species distribution modeling // Proceed. of the 21st Int. Conf. on Machine Learning. New York: ACM Press, 2006. Р. 655–662.
  30. Wiley E.O., McNyset K.M., Peterson A.T. et al. Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm // Oceanography. 2003. V. 16. Р. 120–127.
  31. Shcherbakov I.P. Lesnoj pokrov Severo-Vostoka SSSR. Novosibirsk: Nauka, 1975. 344 p.
  32. Yu M, Wang G., Parr D., Ahmed K.F. Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs // Climatic Change. 2014. V. 127. P. 257–271.
  33. Zamolodchikov D.G., Kobyakov K.N., Kokorin A.O. et al. Les i klimat. M.: Vsemirnyj fond dikoj prirody (WWF), 2015. 40 p.

Leave a Reply

Your email address will not be published. Required fields are marked *