Без рубрики

Volcanic features of IOCG mineralizationin Kildyam volcanic complex of Central Yakutia (Russia)

A.V. Kostin
DOI 10.31242/2618-9712-2022-27-1-32-45

Show more

Diamond and Precious Metal Geology Institute SB RAS, Yakutsk, Russia
[email protected]

Received 26.01.2022
Accepted 18.02.2022

Citation
Kostin A.V. Volcanic features of IOCG mineralization in Kildyam volcanic complex of Central Yakutia (Russia) // Arctic and Subarctic Natural Resources. 2022, Vol. 27, No. 1. P. 32–45. (In Russ.) https://doi. org/10.31242/2618-9712-2022-27-1-32-45

Abstract. This contribution presents the evidence for volcanic geology and associated magnetite-hematite and other mineralization from volatile-rich lavas and related gas-phases. Recently discovered the Yakut iron belt is approximately 120 km long and 10 km wide. The Zone contains 1 large and about 4 smaller high-grade ore deposits in the upper Jurassic sediments. The existence of ore with volcanic features demonstrates that ore magmas reach surface in Kildyam Volcanic Complex. Occurrence of rapid-growth textures, vesicular ore lava and pyroclastic ore demonstrate emplacement of ore magmas at or near the surface and confirm that this deposit is volcanic. Kildyam ore occur as massive, sub-horizontal, tabular bodies, as crosscutting feeder dikes and as stratified, fragmental magnetite-lavas material. Effusive iron-oxide liquids reach surface via feeder dikes and sub-parallel swarms of fissures and voids. Main ore product, expelled from fissure, is a magnetite-rich pyroclastic material deposited on Kildyam andesitic lavas. Heavy magnetite lava characterized by textures: (a) subrounded fragments of altered volcanic rocks in a magnetite matrix; (b) upward transition from dense to highly vesicular magnetite lava; (c) pyroclastic ore dominated by lapilli-sized material discordant above ore lava with sheeted structure; (d) magnetite lava with well-developed sheeted structure due to laminar flow; (e) scoriaceous magnetite lava from the flow top; (f) stratification in a lenses of pyroclastic ore within the magnetite lava flow. The final magnetite ore bodies formed from iron oxide magma that intruded local volcanic sequence and in places erupted at surface. Volcanic breccia and iron-oxide mineralization from Kildyam succession contain (a) oxides: hematite, magnetite, Ti-magnetite; phenocrysts of ilmenite, rutile, pseudorutile, and ilmenorutile (Ti,Nb,Fe+++)O2; (b) sulfides: argentite, chalcopyrite, bartonite, pyrite, pyrrhotite, tetrahedrite, troilite; (c) alloys: Au, Au– Ag–Cu–Fe, Cu, Cu–Zn, Fe, Fe–Al–Cu. Ni–Fe–Cu–Sn. Iron native and as sulfides with copper, enriched from the liquid sulfide droplets; copper, led, silver and gold precipitated from high-temperature late magmatic fluids. The study presents evidence for growth of magnetite from iron-oxide-rich liquids and of magnetite, hematite and other minerals from volatile-rich magmas and related gas-phases. Occurrence of diverse gold, silver, copper and lead minerals in magnetite lavas led to preserve IOCG (Iron Oxide Copper Gold) mineralization. Based on the research carried out so far, it is generally accepted that Kildyam group has potential to become a new world-class size IOCG deposit at 30 km near Yakutsk.

Keywords: Kildyam volcanic complex, liquid immiscibility, metallic alloys, IOCG mineralization, olivine-pyroxenite, andesite, dacite, melilitite, magnetite lavas, gold, silver.

Acknowledgements. This research was funded by Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences (project number 0381-2019-004). I am grateful for supporting the idea of studying the Kildyam volcanic complex and numerous discussions on all aspects of volcanism to my colleagues from the Institute – V.A. Trunilina, O.B. Oleynikov, V.S. Grinenko and M.S. Zhelonkina.


References

  1. Podjyachev B.P., Prokopiev V.S., Andreev A.P., Nikolaeva L.S. YNV. State geological map of the Russian Federation on a scale of 1:200 000 with an explanatory note. Nizhneamginskaya series. Sheet P-52-XVI (Yakutsk). St. Petersburg, 2004.
  2. Podjyachev B.P., Prokopiev V.S., Andreev A.P., Nikolaeva L.S. YNV. State geological map of the Russian Federation on a scale of 1:200 000 with an explanatory note. Nizhneamginskaya series. Sheet P-52-XXII (Pokrovsk). St. Petersburg, 2004.
  3. Sillitoe R.H., Burrows D.R. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile // Econ. Geol. [Internet]. 2002. Aug 1. No. 97(5). P. 1101–1109. Available from: https://doi. org/10.2113/gsecongeo.97.5.1101
  4. Kostin A.V. Mineralization in the Kildyam mafic volcanic rocks-a magmatic contribution to ore-forming fluids (Central Yakutia, Russia) // Arct. Subarct. Nat. Resour. [Internet]. 2021. Vol. 26(2). P. 49–71. Available from: https://doi.org/10.31242/2618-9712-2021-26-2-3
  5. Smelov A.P., Surnin A.A. Gold of the city of Yakutsk // Sci First Hand [Internet]. 2010, No.4 (34).
    P. 16–19. Available from: https://cyberleninka.ru/article/n/ zoloto-goroda-yakutska
  6. Nystroem J.O., Henriquez F. Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry // Econ Geol [Internet]. 1994. Jul 1. No. 89(4). P. 820–839. Available from: https://doi.org/10.2113/gsecongeo.89.4.820
  7. Minghini M., Mobasheri A., Rautenbach V., Brovelli M.A. Geospatial openness: from software to standards & data. Open Geospatial Data // Softw Stand [Internet]. 2020. No. 5(1). P. 1. Available from: https://doi. org/10.1186/s40965-020-0074-y
  8. Bakillah M., Liang S. Open geospatial data, software and standards. Open Geospatial Data, Softw Stand [Internet]. 2016. No. 1(1). P. 1. Available from: https:// doi.org/10.1186/s40965-016-0004-1
  9. Kostin A.V. Mineral parageneses of the anorthositic xenoliths and ore potential of the upper Cretaceous volcano «Shadow-01» (Lena-Vilyuy region, East of the Siberian platform) // Arct. Subarct. Nat. Resour. [Internet]. 2015. No. 2(78). P. 35–41. Available from: https:// elibrary.ru/item.asp?id=25981696
  10. Philpotts A.R. Compositions of immiscible liquids in volcanic rocks // Contrib to Mineral Petrol [Internet]. 1982. Vol. 80(3). P. 201–218. Available from: https://doi.org/10.1007/BF00371350
  11. Chin E.J., Shimizu K., Bybee G.M., Erdman M.E. On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective // Earth Planet. Sci. Lett. [Internet]. 2018. No. 482. P. 277–287. Available from: https://www.sciencedirect.com/ science/article/pii/S0012821X17306520
  12. Keller T., Hanchar J.M., Tornos F., Suckale J. Formation of the El Laco magmatic magnetite deposits by Fe-Si melt immiscibility and bubbly suspension flow along volcano tectonic faults // AGU Fall Meeting Abstracts. 2018. P. V43H–0231.
  13. Hunter E.A.O., Hunter J.R., Zajacz Z., Keith J.D., Hann N.L., Christiansen E.H., et al. Vapor transport and deposition of Cu-Sn-Co-Ag alloys in vesicles in mafic volcanic rocks // Econ. Geol. [Internet]. 2020. Vol. 115(2). P. 279–301. Available from: https://doi.org/10.5382/ econgeo.4702
  14. Andersen J.C. Postmagmatic sulphur loss in the Skaergaard intrusion: implications for the formation of the Platinova Reef // Lithos [Internet]. 2006. Vol. 92(1–2). P. 198–221. Available from: https://doi.org/10.1016/ j.lithos.2006.03.033
  15. Polacci M., Corsaro R.A., Andronico D. Coupled textural and compositional characterization of basaltic scoria: Insights into the transition from Strombolian to fire fountain activity at Mount Etna, Italy // Geology [Internet]. 2006 Mar 1. Vol. 34(3). P. 201–204. Available from: https://doi.org/10.1130/G22318.1
  16. Minissale S., Zanetti A., Tedesco D., Morra V., Melluso L. The petrology and geochemistry of Nyiragongo lavas of 2002, 2016, 1977 and 2017 AD, and the trace element partitioning between melilitite glass and melilite, nepheline, leucite, clinopyroxene, apatite, olivine and Fe-Ti oxides: a unique scenario // Lithos. [Internet]. 2019. Vol. 332–333. P. 296–311. Available from: https:// www.sciencedirect.com/science/article/pii/ S0024493719300933
  17. Andersson J.B.H., Bauer T.E., Martinsson O. Structural evolution of the Central Kiruna Area, Northern Norrbotten, Sweden: Implications on the geologic setting generating iron oxide-apatite and epigenetic iron and copper sulfides // Econ. Geol. [Internet]. 2021 Dec 1. Vol. 116(8). P. 1981–2009. Available from: https://doi. org/10.5382/econgeo.4844
  18. Godel B., Rudashevsky N.S., Nielsen T.F.D., Barnes S.J., Rudashevsky V.N. New constraints on the origin of the Skaergaard intrusion Cu–Pd–Au mineralization: Insights from high-resolution X-ray computed tomography // Lithos [Internet]. 2014. Vol. 190–191. P. 27–36. Available from: https://www.sciencedirect.com/ science/article/pii/S0024493713004027
  19. Kamenetsky V.S., Belousov A., Sharygin V.V., Zhitova L.M., Ehrig K., Zelenski M.E., et al. High‐temperature gold‐copper extraction with chloride flux in lava tubes of Tolbachik volcano (Kamchatka) // Terra Nov [Internet]. 2019. Dec. Vol. 31(6). P. 511–517. Available from: https://doi.org/10.1111/ter.12420
  20. Kostin A.V. Immiscible silicaand iron-rich melts at the Kildyam volcano complex (central Yakutia, Russia) // Arct. Subarct. Nat. Resour. [Internet]. 2020. Vol. 25(2). P. 25–44. Available from: https://doi.org/ 10.31242/2618-9712-2020-25-2-2
  21. Kostin A.V., Trunilina V.A. Volcanogenic creations of Kangalassky terrace (left bank of the Lena River, Central Yakutia) // Adv. Curr. Nat. Sci. [Internet]. 2018. No. 5. P. 92–100. Available from: https://doi.org/ 10.17513/use.36761
  22. Melluso L., Morra V., Gennaro R. de’. Coexisting Ba-feldspar and melilite in a melafoidite lava at Mt. Vulture, Italy: Role of volatiles and alkaline earths in bridging a petrological incompatibility // Can. Mineral [Internet]. 2011. Aug. 1. Vol. 49(4). P. 983–1000. Available from: https://doi.org/10.3749/canmin.49.4.983
  23. Henríquez F., Naslund H.R., Nyström J.O., Naranjo J.A. Igneous textures in magnetite eruptive products at El Laco, Chile // Int. Assoc. Volcanol. Chem. Earth’s Inter. (IAVCEI). Gen. Assem. (abstract poster). Pucón-Chile, 2004.
  24. Soldati A., Farrell J.A., Wysocki R., Karson J.A. Imagining and constraining ferrovolcanic eruptions and landscapes through large-scale experiments // Nat. Commun. [Internet]. 2021. Vol. 12(1). P. 1711. Available from: https://doi.org/10.1038/s41467-021-21582-w
  25. Kostin A. Mineralization in the andesitic lava from Kildyam volcanic complex, central Yakutia, Russia // IOP Conf. Ser. Earth Environ. Sci. [Internet]. 2021. Vol. 906(1). P. 12006. Available from: http://dx.doi.org/ 10.1088/1755-1315/906/1/012006
  26. Grinenko V.S., Kostin A.V., Kirichkova A.I. New data on the upper jurassic – lower cretaceous rocks in the Eastern Siberian platform // Vestn. Vor. Gos. Univ. Ser. Geol. [Internet]. 2018. No. 2. P. 48–55. Available from: http://doi.org/10.18411/vgu-sg-2018-2-48-55
  27. Jakobsen J.K., Veksler I.V., Tegner C., Brooks C.K. Immiscible iron-and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion // Geology [Internet]. 2005. Vol. 33(11). P. 885–888. Available from: https://doi.org/10.1007/s00410-009-0416-3
  28. Lledo H.L., Naslund H.R., Jenkins D.M. Experiments on phosphate–silicate liquid immiscibility with potential links to iron oxide apatite and nelsonite deposits // Contrib. to Mineral. Petrol. [Internet]. 2020. Vol. 175(12). P. 111. Available from: https://doi.org/ 10.1007/s00410-020-01751-8
  29. Bas M.J.L.E., Maitre R.W.L.E., Streckeisen A, Zanettin B. Rocks IS on the S of I. A chemical classification of volcanic rocks based on the total alkali-silica diagram // J. Petrol. 1986. Vol. 27(3). P. 745–750.
  30. Ovalle J.T., La Cruz N.L., Reich M., Barra F., Simon A.C., Konecke B.A., et al. Formation of massive iron deposits linked to explosive volcanic eruptions // Sci. Rep. [Internet]. 2018. Vol. 8(1). P. 14855. Available from: https://doi.org/10.1038/s41598-018-33206-3
  31. Corriveau L. Iron oxide copper-gold (±Ag±Nb±P±REE±U) deposits: A Canadian perspective // Geol. Surv. Canada la Couronne. Québec, Canada, 2006. P. 1–23.

Leave a Reply

Your email address will not be published.