Без рубрики

Anti-icing systems based on elastomers modified with carbon nanostructures with the effect of temperature self-regulation

A.V. Shchegolkov*, A.V. Shchegolkov
DOI 10.31242/2618-9712-2022-27-1-141-151

Show more

Tambov State Technical University, Tambov, Russia
*Ener[email protected]

Received 05.10.2021
Accepted 27.01.2022

Shchegolkov A.V., Shchegolkov A.V. Anti-icing systems based on elastomers modified with carbon nanostructures with the effect of temperature self-regulation // Arctic and Subarctic Natural Resources. 2022, Vol. 27, No. 1. P. 141–151. (In Russ.) https://doi.org/10.31242/2618-9712-2022-27-1-141-151

Abstract. The increased activity in the Arctic and the northern territories of the Russian Federation makes the development of the efficient de-icing systems highly relevant. The key challenge in the development of de-icing systems with a high level of energy efficiency combined with the physical, mechanical and electro-physical properties of the materials which can become the basis for producing heating elements. The use of the principle of self-regulation of temperature for electric heaters based on elastomers modified by multilayer carbon nanotubes (MCNTs) makes it possible to form energy-efficient de-icing systems. The paper presents experimental results of the study of electric heaters with self-regulating temperature effect. For carrying out the studies, we developed and produces samples based on a polymeric matrix – an organosilicon compound – which was modified by MCNT and graphite. We used a scanning electron microscopy technique in order to study the morphology of MCNTs and graphite. The application of a non-contact method of temperature investigation made it possible to estimate the temperature field distribution on the surface of the heating elements. The results are of great practical importance, since the heating elements can have different configurations and can be used at low ambient temperatures. We have found that for a sample with a MCNT and graphite (mass concentration equal to 16.5 wt. %) that a decrease in the ambient temperature results in an increase in the current consumption and correspondingly in the power up to 2.2 kW/m2, which is a consequence of a constant temperature of 71.4 °С on the heater surface and a confirmation of the self-regulation effect. The developed heaters can become the basis of various technical systems for de-icing.

Keywords: deicing systems, elastomers, carbon nanotubes, graphite, electric heater, temperature field.

Acknowledgements. The research was carried out within the framework of the Agreement number 10-MU20 on support of the winning project number 23-MU-20 (02) of the regional competition «Grants to Support Applied Research of Young Scientists in 2020».


  1. Shiklomanov N.I. From Exploration to Systematic Investigation: Development of Geocryology in 19thand Early–20th-Century Russia // Physical Geography. 2005. Vol. 26, No. 4. P. 249–263, DOI: 10.2747/0272-3646. 26.4.249
  2. Farzaneh M., Ryerson C.R. Anti-icing and deicing techniques // Cold Regions Science and Technology. 2011. Vol. 65. Iss. 1. P. 1–4. https://doi.org/10.1016/ j.coldregions.2010.08.012
  3. Zehui Zhao, Huawei Chen, Xiaolin Liu, Zelinlan Wang, Yantong Zhu, Yuping Zhou. The development of electric heating coating with temperature controlling capability for anti-icing/de-icing // Cold Regions Science and Technology. 2021. Vol. 184. P. 103234. https://doi.org/10.1016/j.coldregions.2021.103234.
  4. Roberts A., Brooks R., Shipway Ph. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions // Energy Conversion and Management. 2014. Vol. 82. P. 327–350. https://doi.org/10.1016/j.enconman.2014.03.002
  5. Deng Y., Liu H., Zhao X., E J., Chen J. Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model // Applied Energy. 2018. Vol. 210. P. 279–287. https://doi.org/10.1016/j.apenergy.2017. 10.093
  6. Faria M.V., Varella R.A., Duarte G.O., Farias T.L., Baptista P.C. Engine cold start analysis using naturalistic driving data: City level impacts on local pollutants emissions and energy consumption // Science of The Total Environment. 2018. Vol. 630. P. 544–559. https://doi.org/10.1016/j.scitotenv.2018.02.232
  7. Paunović V., Mitić V., Pavlović V., Miljković M., Živković L. Microstructure evolution and phase transition in La/Mn doped barium titanate ceramics // Processing and Application of Ceramics. 2010. Vol. 4, No. 4. P. 253– 258. https://doi.org/10.2298/PAC1004253P
  8. Petrović M.M.V., Bobić J.D., Grigalaitis R., Stojanović B.D., Banys J. La-doped and La/Mn-co-doped barium titanate ceramics // Acta Physica Polonica A. 2013. Vol. 124, No. 1. P. 155–160. https://doi.org/10.12693/ APhysPolA.124.155
  9. Rowlands W., Vaidhyanathan B. Additive manufacturing of barium titanate based ceramic heaters with positive temperature coefficient of resistance (PTCR) // Journal of the European Ceramic Society. 2019. Vol. 39, No. 12. P. 3475–3483. https://doi.org/10.1016/j.jeurceramsoc. 2019.03.024
  10. Lagrève C., Feller J.F., Linossier I., Levesque G. Poly (butylene terephthalate) / poly (ethylene-co-alkylacrylate) / carbon black conductive composites: Influence of composition and morphology on electrical properties // Polymer Engineering and Science 2001. Vol. 41. P. 1124–1132. https://doi.org/10.1002/pen.10813 2001
  11. Russo P., Langella A., Papa I., Simeoli G., Lopresto V. Thermoplastic polyurethane/glass fabric composite laminates: Low velocity impact behavior under extreme temperature conditions // Composite Structures. 2017. Vol. 166. P. 146–152. https://doi.org/10.1016/ j.compstruct.2017.01.054
  12. Zhao Z., Chen H., Liu X., Wang Z., Zhu Y., Zhou Y. Novel sandwich structural electric heating coating for anti-icing/de-icing on complex surfaces // Surface and Coatings Technology. 2020. Vol. 404. P. 126489. https:// doi.org/10.1016/j.surfcoat.2020.126489
  13. Luo J., Lu H., Zhang Q., Yao Y., Chen M., Li Q. Flexible carbon nanotube/polyurethane electrothermal films // Carbon. 2016. Vol. 110. P. 343–349. https://doi. org/10.1016/j.carbon.2016.09.016
  14. Ha J.-H., Chu K., Park S.-H. Electrical Properties of the Carbon-Nanotube Composites Film Under Extreme Temperature Condition // Journal of Nanoscience and Nanotechnology. 2019. Vol. 19, No. 3. P. 1682–1685. https://doi.org/10.1166/jnn.2019.16250
  15. Cheng Y., Zhang H., Wang R., Wang X., Zhai H., Wang T., Jin Q., Sun J. Highly Stretchable and Conductive Copper Nanowire Based Fibers with Hierarchical Structure for Wearable Heaters // ACS Applied Materials and Interfaces. 2016. Vol. 8, No. 48. P. 32925–32933. https://doi.org/10.1021/acsami.6b09293
  16. Vertuccio L., Foglia F., Pantani R., RomeroSánchez M.D., Calderón B., Guadagno L. Carbon nanotubes and expanded graphite based bulk nanocomposites for de-icing applications // Composites Part B: Engineering. 2021. Vol. 207. Article number 108583. https://doi.org/10.1016/j.compositesb.2020.108583
  17. Vertuccio L., De Santis F., Pantani R., Lafdi K., Guadagno L. Effective de-icing skin using graphenebased flexible heater // Composites Part B: Engineering.
  18. Vol. 162. P. 600–610. https://doi.org/10.1016/ j.compositesb.2019.01.045
  19. Yao X., Hawkins S.C., Falzon B.G. An advanced antiicing/de-icing system utilizing highly aligned carbon nanotube webs // Carbon. 2018. Vol. 136. P. 130–138. https://doi.org/10.1016/j.carbon.2018.04.039
  20. Ali I., AlGarni T.S., Shchegolkov A., Shchegolkov A., Jang S.-H., Galunin E., Komarov F., Borovskikh P., Imanova G.T. Temperature self-regulating flat electric heaters based on MWCNTs-modified polymers // Polymer Bulletin. 2021. Article in press. https://doi.org/ 10.1007/s00289-020-03483-y
  21. Baloch K.H., Voskanian N., Bronsgeest M., Cumings J. Remote Joule heating by a carbon nanotube // Nature Nanotechnology. 2012. Vol. 7, No. 5. P. 316–319. https://doi.org/10.1038/nnano.2012.39
  22. Celzard A., McRae E., Deleuze C., Dufort M., Furdin G., Mareche J.F. Critical concentration in percolating systems containing a high-aspect-ratio filler // Physical Review B – Condensed matter and materials physics. 1996. Vol. 53, No. 10. P. 6209–6214. https://doi.org/10.1103/PhysRevB.53.6209
  23. Bai J.B., Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – experimental investigation // Composites Part A – Applied science and manufacturing. 2003. Vol. 34, No. 8. P. 689–694. https://doi.org/10.1016/S1359-835X(03)00140-4
  24. Cacucciolo V., Shintake J., Kuwajima Y., Maeda Sh., Floreano D., Shea H. Stretchable pumps for soft machines // Nature. 2019. Vol. 572. P. 516–519. https:// doi.org/10.1038/s41586-019-1479-6
  25. Li Fen, Lu Yonglai, Liu Li, Zhang Liqun, Dai Jiabin, Ma Jun. Relations between carbon nanotubes’ length and their composites’ mechanical and functional performance // Polymer. Vol. 54, No. 8. P. 2158–2165. doi:10.1016/j.polymer.2013.02.019
  26. Shchegolkov A.V., Jang S.-H., Shchegolkov A.V., Rodionov Y.V., Glivenkova O.A. Multistage Mechanical Activation of Multilayer Carbon Nanotubes in Creation of Electric Heaters with Self-Regulating Temperature // Materials. 2021. Vol. 14, Iss. 16. P. 4654. https://doi.org/10.3390/ma14164654
  27. Shchegolkov A.V. Sravnitelnyy analiz teplovykh effektov v elastomerakh. modifitsirovannykh MUNT pri postoyannom elektricheskom napryazhenii // Vektor nauki Toliattinskogo gosudarstvennogo universiteta. 2021. No. 1(55). P. 63–73. https://doi.org/10.18323/20735073-2021-1-63-73
  28. Liu Q., Tu J., Wang X., Yu W., Zheng W., Zhao Z. Electrical conductivity of carbon nanotube/poly(vinylidene fluoride) composites prepared by high-speed mechanical mixing // Carbon. 2012. Vol. 50, Iss. 1. P. 339– 341. https://doi.org/10.1016/j.carbon.2011.08.051
  29. Shchegolkov A.V. Mnogostupenchataya mekhanoaktivatsiya MUNT dlya uluchsheniya perkolyatsionnykh perekhodov v sisteme elastomer/MUNT: podkhody dlya realizatsii i praktika modifikatsii elastomerov // Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova. 2021, Vol. 19, No. 2, P. 58–67. https://doi.org/10.18503/1995-2732-202119-2-58-67

Leave a Reply

Your email address will not be published.